If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=59
We move all terms to the left:
b^2-(59)=0
a = 1; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·1·(-59)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{59}}{2*1}=\frac{0-2\sqrt{59}}{2} =-\frac{2\sqrt{59}}{2} =-\sqrt{59} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{59}}{2*1}=\frac{0+2\sqrt{59}}{2} =\frac{2\sqrt{59}}{2} =\sqrt{59} $
| 2(x+5)(x+5)=24 | | 6~8x=30 | | 36x+30=6x | | 32x=3.29 | | 3n+5=n+10 | | 2t-3=22+t | | 6z-7=2z-21.25 | | -.9(x+3)(x-3)=0 | | y/16+8=14 | | 6=1w/5w+7w/5w-4 | | 3(2y-3)=39 | | 6t-21=39+t | | -8.7=k+5.1 | | -5(7-6x)=-185 | | 11(2x+4)=44+11x | | 2x÷3+5=12 | | 9w+3=4w-9-2.4 | | 7k–6=k | | -9x+15=-8 | | 4x-12+3x+23=180 | | 1.5=0.75q+0.25 | | 4s-1=8-2s1.5 | | 5y+8y=32 | | 61/4=r/7 | | 5n-15=50 | | 16t^2-200=0 | | -8y-(-6)=6 | | -7+z=3 | | -5x+32=-20x+48 | | 19−x−−−−−√+97+x−−−−−√=14 | | 16t^2-200=31 | | 3g+5=7g+40.25 |